
Interval propagation method for finding trajectories of chaotic maps

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 6491

(http://iopscience.iop.org/0305-4470/37/25/005)

Download details:

IP Address: 171.66.16.91

The article was downloaded on 02/06/2010 at 18:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/25
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 6491–6506 PII: S0305-4470(04)72267-2

Interval propagation method for finding trajectories of
chaotic maps

Konstantin L Kouptsov

Department of Physics, Washington State University, Webster Physical Sciences, Pullman,
WA 99164, USA

E-mail: kouptsov@wsu.edu

Received 18 November 2003, in final form 13 April 2004
Published 9 June 2004
Online at stacks.iop.org/JPhysA/37/6491
doi:10.1088/0305-4470/37/25/005

Abstract
The algorithm for calculation of trajectories of chaotic maps, based on the
interval analysis, is proposed. Each of the image points is constrained by
enclosing it in a corresponding interval. Improvement of one of the constraints
results in the chain of adjustments of other interval bounds propagating along
the trajectory, eventually causing the constraints to converge. No knowledge
of well-defined symbolic dynamics is necessary since the pruning rules and
non-uniqueness of the symbolic path are automatically resolved. For cycles
and fixed-end orbits the algorithm provides linear uniform convergence. The
algorithm is demonstrated for the Hamiltonian system where existence of both
positive and negative Lyapunov exponents allows introduction of a simple
interval-contracting procedure.

PACS number: 05.45.Mt

1. Introduction

The importance of periodic orbits in forming the underlying structure of chaotic dynamics is
well known [1–6]. A number of algorithms for finding the periodic orbits have been developed.
They are briefly reviewed below.

The earliest and simplest approach proposed was to identify the candidates for the periodic
orbits from a set of numerically calculated trajectories and then use the Newton–Raphson
iterations to improve precision [7].

Another technique [8] to find an n-periodic orbit {x1, . . . , xn, xn+1 = x1} of the map T
(which satisfies the equation Tnx = x) is to consider an n-dimensional vector X = {xi}, which
satisfies the equation (T − I )X = 0, where T is the (nonlinear) n-dimensional representation
of T. The solution of the last equation is found by iterating the generalized Newton–Raphson
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method Xn+1 = Xn +
(
T ′

Xn
− I

)−1
(Xn − T Xn). Here T ′

Xn
is the linear tangent map (Jacobian

matrix) at point Xn and I is the unitary matrix. The iterations converge very rapidly for a good
initial guess. The drawback of this method is the one well known for the classical Newton’s
method: if the initial guess is ill chosen, the iterations may diverge, end up on a cycle, or
wander off to a different point. With large n the map T is fast oscillating and the choice of
initial point becomes even more difficult.

The generalization of the Newton–Raphson method to intervals was proposed by Z Galias
[9] using the Krawczyk operator, a version of the interval Newton operator,

K(x) = x0 − Cf (x0) − (Cf ′(x) − I )(x − x0).

Here, x is an interval (or m-dimensional interval vector) containing a real number x0 (m-
dimensional vector, correspondingly) and C is the preconditioning matrix. The Krawczyk
operator is commonly used in verification of the existence of solutions of nonlinear equations.
In Galias’ method one finds a fixed point of the equation f (x) = Tnx = x by enclosing
the proposed region in an mn-dimensional cube and checking if it contains a fixed point of
Tn. The enclosing intervals are then subdivided until the desired precision is achieved. The
method [9] thus allows finding all periodic orbits of a given length. Particularly, all periodic
orbits up to period 15 were found for the Ikeda map.

Dynamics of certain chaotic systems was well studied to the degree that a good symbolic
grammar for the orbits has been found. In the case of the stadium billiard, an example to be
considered later, see, for instance, [10]. If the symbols are well ordered, the method proposed
in [11] can be used. It is based on associating points (x, y) on the Poincaré plane with numeric
values (δ, γ ) of the symbolic string. Then by comparing (δ, γ ) with (δC, γC), the symbolic
values corresponding to the given string C, one can make subsequent approximations to the
desired (xC, yC). The method also requires that the directions of the δ and γ axes be specially
chosen parallel to the stable and unstable manifolds respectively.

The most popular and widely used methods are based on optimization. Thus in the case of a
stadium billiard [12] an n-variable function is minimized when the reflection condition between
the incoming and outgoing directions is satisfied at each point. Alternatively, according to
the principle of least action, the true n-point orbit has extremal length with respect to small
variations of its reflection points.

Yet another optimization technique, demonstrated for the Hénon [13, 14] and the standard
[15] maps, is based on reproducing the map by a Hamiltonian H of a system of n interacting
particles placed in an external field. The stable and unstable configurations, found by solving
dynamics of the system, provide extremum to the energy and uniquely correspond to a
periodic orbit of the map. The external field is adjusted with a set of parameters to obtain a
particular orbit. The reader may find the discussion of these methods and further references in
[16, chapter 14].

Another interesting method, the characteristic bisection method [17–20], is based on the
topological degree theory [21]. It is a generalization of a well-known bisection method to
arbitrary many dimensions, with the topological degree serving as a criterion for the existence
of the root of the function of n variables inside a chosen n-dimensional polyhedron. The
enclosing polyhedron is refined until the desired precision is achieved. The topological degree
of an N-dimensional map H(x) : RN → RN , proved to be the number of the solutions
of equation H(x) = 0, can in general be found numerically by calculating the Kronecker
integral. The method proposed in [17] avoids this calculation by checking that only the sign
of the topological degree is preserved. The drawback of the characteristic bisection method is
that in some cases it is unable to detect all roots of the map due to the bad choice of the initial
polyhedron.
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Optimization methods mentioned above are designed to solve the problem of finding the
root of the function H of n variables, which, however, is stated more generally than the problem
of finding the orbit of a map. A map brings every phase point into another phase point

(qn, pn) −→ (qn+1, pn+1). (1)

The n steps of the map define a set of n separate equations to be satisfied. The essence of
the method proposed in this paper is to approach the solution by successively satisfying these
equations.

Development of the rigorous theory of the interval propagation method goes beyond the
scope and intentions of the current paper, in which the method supported by several examples
is explained.

2. Interval constraints propagation method

The mapping of the phase space{
qn+1 = Q(qn, pn)

pn+1 = P(qn, pn)
(2)

can, under quite general conditions, be converted to an equivalent second-order recurrence
formula

f (xn−1, xn, xn+1) = 0 (3)

with the appropriate change of coordinates x = x(p, q), x ∈ X. One of the equations in (2)
may serve as an additional equation to render the new system of equations complete. Use of
delayed coordinates (xn−1, xn) is, in a way, a choice of Poincaré section. Equation (3) is an
implicit function xn = F(xn−1, xn+1), in general multivalued.

Domain X is partitioned into several nonintersecting domains (the Markov partition) {Xi}
labelled by the symbols of an alphabet. The orbit {xi} to be calculated is defined by its
symbolic signature, or sequence of symbols {αi}. At every step of calculation each point of
the orbit is bounded by an interval

xi ∈ Iαi
= [xi, xi] ⊂ Xαi

(4)

where xi, xi are real numbers. Thus, the whole orbit corresponds to the vector of intervals
(interval vector) I = {Ii}. Initially Iαi

= Xαi
. Note that we do not require the knowledge

of either the symbolic grammar to ensure the uniqueness of the orbit, or the a priori pruning
rules.

For an orbit {xi} of length n we have a chain of n separate equations

fαi−1αiαi+1(xi−1, xi, xi+1) = 0 i = 1, . . . , N (5)

instead of a single equivalent equation H(x1, x2, . . . , xn) = 0 considered in other methods.
Since the method allows calculation of fixed-end, periodic or open-end orbits, equations in the
beginning and the end of the chain may differ from (5), depending on the boundary conditions.

In equations (5), every xi belongs to the corresponding interval Ii . In this sense the
function Fαi−1αiαi+1(xi−1, xi+1) is the interval-valued function of interval arguments, i.e. the
range of values of F is

F(Ii−1, Ii+1) = {F(x, y) : x ∈ Ii−1, y ∈ Ii+1}. (6)

The interval arithmetic technique was well developed in the literature starting with the
classic book by Moore [22]. There exist interval analogues to elementary arithmetic operations
+,−,×, / defined as the range of values of the corresponding function, the way similar to (6).
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Combination of these operations generally allows one to calculate the range of values for
the real rational expression with variables replaced by their interval ranges. However, this
technique is known to cause undesirable widening of the resulting interval when the function
has several entries of the same variable (each x in x · x is considered independent).

For the algorithm to work, we expect that F is inclusion monotonic

F(X, I) ⊂ F(Y, I ) and F(I,X) ⊂ F(I, Y ) if X ⊂ Y. (7)

and there is a positive real number L such that

w(F(X1, X2)) � L max
i=1,2

w(Xi) (8)

where w([a, b]) = b − a is the width of the interval (b > a).
If for some i the interval value of F is a strict subset of Ii

I ′
i = F(Ii−1, Ii+1) � Ii (9)

the corresponding entry in I is updated. Now, due to (7), the neighbour intervals Ii−1 and Ii+1

must be recalculated, thereby causing a sequence of further updates. One way to proceed is
to update only the right (i + 1) neighbour, and continue moving in that direction. For periodic
orbits, once the right end of the interval vector is reached, one continues updating from the
left end, taking into account the periodicity of the vector. For open- and close-ended orbits,
one continues from the right and moves in another direction. The process continues until the
sequence Ii converges. The algorithm stops when either the widths of all intervals Ii become
zero (which happens for fixed-end and periodic orbits) or condition (9) is no longer satisfied.
The last case, in which a bundle of open-ended orbits is found, will be demonstrated below.

This algorithm resembles the method of solving an ordinary differential equation with
fixed end points proposed in [23]. But the bounds for all intermediate points in the latter
method are found simultaneously by using interval generalization of Newton’s method
[22, 24] or by solving a matrix equation. Sequential solution used in the current method
has another advantage that will be addressed in the next section. This method also resembles
the ‘constraint satisfaction problem’ (CSP) algorithms first introduced in [25]. For an overview
of CSP see [26].

3. Pruning rules and uniqueness

Generally, there are two types of pruning rules [10]. Parameter independent rules arise from
mere geometric setup of the problem (for example, in a billiard, the double bounce off the
straight wall is not possible). They can be used to eliminate the impossible sequences prior
to calculations. Dynamic or parametric pruning rules are much harder, if at all possible, to
determine. They are applicable not to all possible sequences since they depend on additional
parameters, such as the end points of the orbit.

As said above, this method does not require the knowledge of the pruning rules. Indeed,
obtaining an empty interval value I ′ in (9) means that the corresponding symbolic sequence
{αi} (with the given interval vector) is pruned. Pruned sequences are usually eliminated during
the first few rounds of the algorithm.

If (9) gives more than one interval, the particular symbolic sequence may correspond to
multiple orbits. The symbolic grammar therefore needs to be extended by adding new letters.
However, for the purpose of finding the orbits, this is not necessary. Nonuniqueness can be
dealt with by using the stack or queue algorithmic storage mechanisms. Suppose the value of
(9) is two nonintersecting intervals

I ′
i ∪ I ′′

i = F(Ii−1, Ii+1) ⊂ Ii . (10)
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Then two interval vectors are formed

I′ = {. . . , I ′
i , . . .} and I′′ = {. . . , I ′′

i , . . .}.
The second, I′′, interval vector is stored in a stack while calculations are performed using the
first one. During calculations additional intermediate interval vectors may be added to the
storage. Once the first possibility is examined, i.e. either it is pruned out, or calculations
converged, the next vector in storage is taken. Calculations are continued until the stack is
empty.

With addition of the stack, we now have the complete algorithm.
Dynamically storing the intermediate data is more space and time efficient than identifying

the m possible branching points along the path and generating 2m possible interval vectors.
Efficiency is achieved because the elimination of one pruned path may exclude more than one
branch from further consideration.

4. Examples: Bunimovich stadium

4.1. Geometry

As an illustration of the above algorithm we consider a γ = 2 Bunimovich stadium—two
unit semicircles joined by straight edges of length γ . A point inside the billiard is moving
with a constant speed and makes elastic reflections off the boundaries. It is common to take
the middle point of the right semicircle as the origin and measure the distance qn to the nth
reflection point clockwise along the boundary. The conjugate (momentum) coordinate pn is
the angle between the outbound trajectory and the forward tangent direction at point qn. The
delayed coordinates (qn, qn+1) are the coordinates of the end points of the outbound chord
(figure 1(a)).

The boundary is naturally divided into four parts which we label T ,B for the straight edges
and L,R for the circular caps. The four-letter alphabet, however, is not enough to uniquely
define an orbit; we would need to split L and R into L+, L−, R+, and R−: T is a bounce from the
top horizontal border, B is a bounce from the bottom, L± is a bounce from the left semicircle
clockwise/anticlockwise with respect to its centre and R± is a clockwise/anticlockwise bounce
from the right cap.

Based on numerical evidence, Biham and Kvale conjectured [12] that no two distinct
orbits can be described by the same symbol sequence of this six-letter alphabet. Later studies
showed that the number of needed letters can be reduced to 5 by symmetry considerations. In
the current paper it is shown that the use of the four-letter alphabet still allows finding all the
orbits of the given symbolic signature.

For convenience, the coordinates q are taken to be local, i.e. relative to the corresponding
boundary segment. The full coordinate of a bounce point is a pair {α, ξ}, where α ∈
{T ,R,B,L}, and ξ ∈ [0, 2] for a = T or B or ξ ∈ [0, π ] for a = L or R, figure 1(b).
The boundary coordinates (α, ξ) for the point on the boundary can also be converted to the
Cartesian coordinates (x, y). Further both of these representations are used interchangeably.

Our further goal is to define the chain functions (5) and to find a way to calculate the
interval value (9) of function F.

For a trajectory passing through the space points (x1, y1) and (x2, y2), and reflecting
off the flat boundary x = 0 the reflection point may be found by considering an image
(x ′

1, y
′
1) = (x1,−y1) of one of the points, figure 1(c). For reflection point at the origin, we

have x1y2 + x2y1 = 0, or

XT
1 MX2 = 0 where X =

(
x

y

)
M =

(
0 1
1 0

)
. (11)
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(a) qn
pn

qn+1

0

(b)

O

T

B

L

2 0

π0

0

2

π

0

x

y

(c)

x

y

(x1, y1)

(x2, y2)

(0, 0)

(d)

X0

X2

X ′
1

X ′′
1

X ′′′
1

R

Figure 1. (a) Canonic (Birkhoff) (qn, pn) and delayed (qn, qn+1) coordinates, (b) local coordinates
(α, ξ) on each of the boundary segments, (c) simple reflection geometry and (d) ‘plane mirror’
reflection orbit X0X

′′
1X2.

An arbitrary fragment (qn−1, qn, qn+1) of trajectory, where qn lies on the boundary, is reduced
to this form by shifting (Tqn

) the middle point to the origin, and rotating the coordinates (Rξ )

to align the normal to the boundary at point qn with the vertical. Rotation is necessary only
for L and R bounces. Due to our choice of coordinates the rotation angle is the coordinate ξn.
Assuming that points X1 = (x1, y1),X2, X3 correspond to coordinates (α, ξ1), (β, ξ2), (γ, ξ3)

on the boundary, the general form of equation (5) becomes

fαβγ

(
ξ1, ξ2, ξ3

) = XT
1 T T

X2

(
RT

ξ2

)ν
M(Rξ2)

νTX2X3

= Xα(ξ1)
T Zβ(ξ2)Xγ (ξ3) = 0 (12)

where ξ1, ξ2, ξ3 are the coordinates on the boundary segments α, β, γ correspondingly.
Here, TX2X1 = (x1 − x2, y1 − y2) is the translation operator, Rξ is the rotation by angle
ξ ∈ [0, π ], X1 ≡ Xα(ξ1), Zβ ≡ T T

X2

(
RT

ξ2

)ν
M

(
Rξ2

)ν
TX2 , and ν = 1 for β = L,R or ν = 0 for

β = T ,B.
The chain functions (12) reflect the billiard’s invariance under vertical (T ↔ B),

horizontal (L ↔ R) and inversion (T ↔ B and L ↔ R) symmetries. Also fαβγ (x, y, z) =
fγβα(z, y, x), due to time reflection symmetry. The functions fαβγ are listed in the appendix.

In order to use the described algorithm we must show that the functions satisfy conditions
(7), (8). Each equation f (x, y, z) = 0, where the functions f (x, y, z) are listed in the
appendix, implicitly defines functions y(x) with z = const, and y(z) with x = const. The fact
that both y(x) and y(z) are continuous and monotonic can be verified directly, but it can also
be seen geometrically if one remembers that y, z are two consecutive bounce points of the ray
emitted from the same point x on the boundary (and similarly for y and x). Therefore y(x)

and y(z) are inclusion monotonic.
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As far as (8) is concerned, these conditions follow from Bunimovich criteria for
stochasticity of two-dimensional billiards [27], which in physical terms means that a parallel
beam of trajectories reflecting off the focusing boundary diverges to a size larger than its
original size before it reflects again. The billiard under consideration is a standard example of
stochastic billiards satisfying Bunimovich criteria. Thus both conditions are satisfied.

For orbit with fixed end points X1 and X2 we have two more equations of the form

XT
1 Zq1Xq2 = 0

XT
qn−1

Zqn
X2 = 0

(13)

which together with (12) give us a complete chain.
For multiple bounces off the curved boundary, for example α = β = R, equation (12)

has an irrelevant root corresponding in this case to ξ1 = ξ2. This root is undesirable, since
specifying the orbit by a symbolic sequence, we assume that all bounce points are different. If
two bounce points coincide, the orbit would correspond to another, shorter, symbolic sequence.

To understand the appearance of this root, we note that for a flat wall, as one of the space
points, say (x1, y1), approaches the boundary, it is also approached by the reflection point,
until they finally merge. For a flat wall this reflection point is the only possible one. If the
boundary is curved, there in general may be several reflection points, figure 1(d). In this case,
if the space point X0 is close enough to the boundary, the boundary may be locally considered
as flat, and one of the bounce points, X′′

1 , will be in this flat neighbourhood, near X0. If X0 is
inside the billiard, the path X0X

′′
1X2 is legitimate. On the other hand, for two bounces off the

R wall, the case mentioned above, the path X0X
′′
1X2 becomes degenerate, since X0 = X′′

1 , and
must be eliminated. The functions (12) listed in the appendix are modified to exclude this root.

4.2. Interval value of a function

As said above, there are standard methods allowing one to calculate the interval value of the
function (9). Here we use a more direct way based on the vertex method [28] stating that the
bounds of a continuous function with no extreme points lie on the vertices of the n-dimensional
rectangular region.

Let f (x, y) be a real function, ∂f/∂y �= 0 for x ∈ [x, x] and y ∈ [y, y]. Then f (x, y) = 0
implicitly defines (possibly many) branches of the function y = y(x). Let ∂f/∂x �= 0 for
each branch. If y and y are the roots of f for the corresponding values of x, f (x, y) = 0 and
f (x, y) = 0 (we assume ∂y/∂x > 0), then

f (x, y) · f (x, y) < 0 for y < y < y (14)

and similarly for the other sign of the derivative.
To find a range of y, i.e. a set of subintervals of [y, y] for which y satisfies the equation

f (x, y, z) = 0 when x ∈ [x, x] and z ∈ [z, z], one performs the following steps:

1. Find all the roots

R(x, x, z) = {yi}ni=1 = {y} ∪ {y} ∪ {y|f (x, y, z) = 0 or f (x, y, z) = 0} (15)

on the interval [y, y] and include the end points y and y. This will partition the interval
into subintervals. From all the subintervals find those satisfying the condition (14)

Iz = {[yi, yi+1]|f (x, y, z) · f (x, y, z) < 0 for y ∈ [yi, yi+1]} i = 1, . . . , n − 1.

(16)

2. Repeat the same for R(x, x, z) to find Iz. These intervals do not necessarily overlap,
which is illustrated in figure 2(a). Points 1, 2, 3, 4, corresponding to minimum and
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4

Iz Iz

I

z

z

x

x

(b)

0.5 1 1.5 2 2.5 3

-7.5

-5

-2.5

2.5

5

7.5

y

fTRB

f (0, y, 0)

f (2, y, 0)

f (0, y, 2)

f (2, y, 2)

Figure 2. Finding the range of values of y in function f (x, y, z) = 0.

maximum values of x and z, lie on the surface f (x, y, z) = 0. Variation of x while
keeping z = z = const produces the interval Iz. Similarly for z = z we get Iz. The union
of these intervals, however, does not give the true interval I. In order to fix that we repeat
calculations with x and z exchanged, to obtain Ix , and Ix . The resulting interval is the
union I = Iz ∪ Iz ∪ Ix ∪ Ix .

To illustrate the above method, let us consider the path TRB. Let the three points of
the path be defined by the coordinates X0 = (T , x),X1 = (R, y) and X2 = (B, z). We
are interested in the possible values of the middle point provided the other two points vary
along the straight edges of the billiard. Subsequent points X0, X1 and X2 on the boundary are
associated with the equation fTRB(x, y, z) = 0.

If the value of z is fixed, and the value of x varies in the interval [0, 2], the plot of function
f (x, y, 0) gradually changes, shifting the value of its root y = y(x). The two extremal
positions of the plot are shown by solid lines in figure 2(b). Conditions ∂f/∂x �= 0 and
∂f/∂y �= 0 ensure that each root always shifts in the same direction as x increases, and that the
merger of two roots never happens. Thus, the interval of possible values of y is determined
by the values of the root at two extremal values of x: x = 0 and x = 2. In the case under
consideration, Iz = [1.187 68, 1.5708] for z = 0. Similarly, one obtains the values of the other
intervals, Iz = [1.5708, 1.953 91], Ix = Iz, Ix = Iz, and finally I = [1.187 68, 1.953 91].

Note that the range of values of the middle variable, y, was reduced from [0, π ] to the
one above using only the requirement that it must be consistent with the possible values of the
other variables. Now that the new range for y was established, this consistency requirement
can be applied to x, or z, or both, causing a chain of updates. Another comment is that the
validity of the conditions ∂f/∂x �= 0 and ∂f/∂y �= 0 implies the appropriate choice of the
Markov partition.

4.3. Example 1: fixed-end orbit

As a simple illustration of the method we choose the fixed-end orbit passing from X0 to
X1 by bouncing from L and T walls (x0LT x1, figure 3). The chain system consists of two
equations {x0, y0} · ZL(ξ1)XT (ξ2) = 0 and XL(ξ1)ZT (ξ2) · {x1, y1} = 0. One starts from the
initial intervals [0, π ] and [0, 2] for ξ1, ξ2. Using the method of the previous section, one
concludes that the range of values of ξ0 consistent with ξ1 ∈ [0, 2] is [1.139 177, 1.646 373].
Now, assuming that ξ0 ∈ [1.139 177, 1.646 373], the range of values for ξ1 is updated to be
[0.442 633, 0.797 404]. This concludes the first step of the algorithm, and the new ranges for
all variables, ξ0 and ξ1, are written in the first row of table 1.

At each step of the algorithm one updates ξ0, then ξ1. For longer orbits, one starts by
updating ξ0, then proceeds to sequentially update ξ1, ξ2, . . . until the end of the orbit. Then
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(a)

0
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(1)
0

ξ
(0)
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(b)

0
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4 5
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(1)
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(c)

0
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4 5

ξ
(2)
0
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(1)
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(d)

0

1
ξ0
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Figure 3. Interval method for the fixed-end path x0LT x1. (a) Condition that ξ1 must lie in the top
part of the boundary defines the possible values of ξ

(1)
0 . (b) Paths originating from the interval for

ξ0 reach point 1 only if they pass through the narrower segment of the top boundary. (c) Second
step of the algorithm refines the values of ξ0. (d) True path to which iterations converge.

Table 1. Convergence of the intervals for the orbit x0LT x1.

ξ0 ξ1

0 [0.000 000, 3.141 593] [0.000 000, 2.000 000]
1 [1.139 177, 1.646 373] [0.442 633, 0.797 404]
2 [1.351 985, 1.464 457] [0.578 275, 0.657 617]
3 [1.400 229, 1.425 290] [0.606 321, 0.624 035]
4 [1.409 339, 1.414 950] [0.613 652, 0.617 617]
5 [1.411 674, 1.412 930] [0.615 080, 0.615 967]
6 [1.412 127, 1.412 408] [0.615 449, 0.615 647]
7 [1.412 244, 1.412 307] [0.615 521, 0.615 565]
8 [1.412 267, 1.412 281] [0.615 539, 0.615 549]
9 [1.412 272, 1.412 276] [0.615 543, 0.615 545]
10 [1.412 274, 1.412 274] [0.615 544, 0.615 544]
11 [1.412 274, 1.412 274] [0.615 544, 0.615 544]

* [1.412 274, 1.412 274] [0.615 544, 0.615 544]

the chain of updates starts at the end of the orbit and proceeds backwards until the range of ξ0

is again updated. This is the single step of the algorithm. Since all the intervals are updated
in a single step, it can be shown that the convergence is uniform.

4.4. Example 2: periodic orbit

The next example demonstrates how the algorithm resolves ambiguity in the calculation of
the periodic orbit RLLRL (table 2). To see that, we consider the first step of the algorithm in
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Table 2. Finding two solutions of the periodic orbit with intermediate storage of interval vectors.
Notation: > S—new interval vector is put on the stack; S >—next interval vector is taken from
the stack; *—interval vector converged to a real vector corresponding to true trajectory; ×—some
of the variables have empty interval value, interval vector discarded.

ξ0 = ξ5 ξ1(R) ξ2(L) ξ3(L) ξ4(R) ξ5(L) ξ6 = ξ1

>S [0.000, 3.142] [0.000, 3.142] [0.000, 3.142] [0.000, 3.142] [0.000, 3.142] [0.000, 3.142] [0.000, 3.142]

S > [0.000, 3.142] [0.000, 3.142] [0.000, 3.142] [0.000, 3.142] [0.000, 3.142] [0.000, 3.142] [0.000, 3.142]
>S [0.000, 3.142] [1.107, 2.034] [2.105, 3.142] [0.000, 3.142] [0.000, 3.142] [0.000, 3.142] [1.107, 2.034]
>S [0.000, 3.142] [1.107, 2.034] [0.000, 1.036] [1.953, 2.925] [0.000, 3.142] [0.000, 3.142] [1.107, 2.034]
× [1.417, 1.653] [1.107, 2.034] [0.000, 1.036] [0.000, 0.363] [1.107, 1.606] [1.417, 1.653] [1.107, 2.034]

S > [0.000, 3.142] [1.107, 2.034] [0.000, 1.036] [1.953, 2.925] [0.000, 3.142] [0.000, 3.142] [1.107, 2.034]
[1.472, 1.664] [1.107, 1.702] [0.386, 0.887] [2.110, 2.864] [1.439, 2.002] [1.472, 1.664] [1.107, 1.702]
[1.556, 1.584] [1.372, 1.475] [0.503, 0.817] [2.366, 2.605] [1.682, 1.748] [1.556, 1.584] [1.372, 1.475]
[1.565, 1.576] [1.401, 1.451] [0.608, 0.711] [2.456, 2.510] [1.709, 1.722] [1.565, 1.576] [1.401, 1.451]
[1.569, 1.572] [1.417, 1.434] [0.646, 0.670] [2.477, 2.489] [1.714, 1.717] [1.569, 1.572] [1.417, 1.434]
[1.570, 1.571] [1.423, 1.427] [0.655, 0.661] [2.481, 2.484] [1.715, 1.716] [1.570, 1.571] [1.423, 1.427]
[1.570, 1.570] [1.425, 1.426] [0.657, 0.658] [2.482, 2.483] [1.715, 1.716] [1.570, 1.570] [1.425, 1.426]
[1.570, 1.570] [1.425, 1.425] [0.658, 0.658] [2.483, 2.483] [1.716, 1.716] [1.570, 1.570] [1.425, 1.425]
[1.570, 1.570] [1.425, 1.425] [0.658, 0.658] [2.483, 2.483] [1.716, 1.716] [1.570, 1.570] [1.425, 1.425]

* [1.570, 1.570] [1.425, 1.425] [0.658, 0.658] [2.483, 2.483] [1.716, 1.716] [1.570, 1.570] [1.425, 1.425]

S > [0.000, 3.142] [1.107, 2.034] [2.105, 3.142] [0.000, 3.142] [0.000, 3.142] [0.000, 3.142] [1.107, 2.034]
>S [0.000, 3.142] [1.438, 2.034] [2.169, 3.142] [2.801, 3.142] [0.000, 3.142] [0.000, 3.142] [1.438, 2.034]

[1.476, 1.673] [1.438, 2.034] [2.169, 3.142] [0.242, 1.187] [1.134, 1.727] [1.476, 1.673] [1.438, 2.034]
[1.554, 1.593] [1.652, 1.810] [2.307, 2.707] [0.529, 0.806] [1.391, 1.464] [1.554, 1.593] [1.652, 1.810]
[1.564, 1.577] [1.687, 1.750] [2.427, 2.548] [0.629, 0.691] [1.418, 1.434] [1.564, 1.577] [1.687, 1.750]
[1.568, 1.572] [1.706, 1.726] [2.470, 2.498] [0.651, 0.665] [1.423, 1.427] [1.568, 1.572] [1.706, 1.726]
[1.570, 1.571] [1.713, 1.718] [2.480, 2.486] [0.656, 0.660] [1.425, 1.426] [1.570, 1.571] [1.713, 1.718]
[1.570, 1.570] [1.715, 1.716] [2.482, 2.484] [0.657, 0.658] [1.425, 1.425] [1.570, 1.570] [1.715, 1.716]
[1.570, 1.570] [1.715, 1.716] [2.483, 2.483] [0.658, 0.658] [1.425, 1.425] [1.570, 1.570] [1.715, 1.716]
[1.570, 1.570] [1.716, 1.716] [2.483, 2.483] [0.658, 0.658] [1.425, 1.425] [1.570, 1.570] [1.716, 1.716]

* [1.570, 1.570] [1.716, 1.716] [2.483, 2.483] [0.658, 0.658] [1.425, 1.425] [1.570, 1.570] [1.716, 1.716]

S > [0.000, 3.142] [1.438, 2.034] [2.169, 3.142] [2.801, 3.142] [0.000, 3.142] [0.000, 3.142] [1.438, 2.034]
×

detail. Note that the first and the last columns in the table are the duplicates of the other two,
because of the circularity of the path. They are included for the convenience of calculations.

Initially, all the variables are bounded by intervals [0, π ], and the corresponding vector
is put on the stack, as shown in the first row of table 2. The interval for ξ1 is updated to be
[1.107, 2.034] by solving the interval equation fLRL([0, π ], ξ1, [0, π ]) = 0. The algorithm
proceeds to the right by considering the interval equation fRLL([1.107, 2.034], ξ2, [0, π ]) = 0,
where ξ2 ∈ [0, π ], and arriving at ξ2 ∈ [0, 1.036] ∪ [2.105, π ]. One interval is used to form
the interval vector

I = {L[0, π ], R[1.107, 2.034], L[2.105, π ], L[0, π ], R[0, π ], L[0, π ], R[1.107, 2.034]}
which is stored on a stack (row 3). Another interval, [0, 1.036], is used to update the
corresponding range for ξ2.

We now proceed to the next variable, ξ3 ∈ [0, π ]. By solving the equation fLLR([0,

1.036], ξ3, [0, π ]) = 0, we obtain ξ3 ∈ [0, 0.363] ∪ [1.953, 2.925]. Again, the new interval
vector
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I = {L[0, π ], R[1.107, 2.034], L[0, 1.036], L[1.953, 2.925],

R[0, π ], L[0, π ], R[1.107, 2.034]}
is stored on a stack (row 4), whereas the range for ξ3 is updated, ξ3 ∈ [0, 0.363]. Finally, it is
found that ξ4 ∈ [1.107, 1.606] and ξ5 ∈ [1.417, 1.653].

After the first step of the algorithm we arrive at the interval vector

I = {L[1.417, 1.653], R[1.107, 2.034], L[0, 1.036], L[0, 0.363]

R[1.107, 1.606], L[1.268, 1.799], R[1.107, 2.034]}
which is listed in row 5 of table 2. Now the algorithm starts the second round. The range
for ξ1 is updated to be [1.296, 1.521]. When solving the equation fRLL([1.296, 1.521],
ξ2, [0, 0.363]) = 0, one finds that the interval for ξ2 is empty. Hence, this interval vector is
discarded, and the next one, shown in row 6, is popped out of the stack. When the current
interval vector converged, the next one from the stack is taken (row 16, S >). The calculations
are continued until the stack is empty.

Calculations in table 2 automatically found two solutions out of four possibilities. The
existence of two solutions is the effect of the symmetry of the path with respect to the reflection
T ↔ B.

4.5. Example 3: bundle of homoclinic orbits

In the third example we show how to calculate the open-end orbits, for which the ends are
allowed to vary. As a result, the intervals bounding each bounce point converge to some
minimal interval instead of a single point. Particularly we consider the calculation of a
homoclinic orbit in the neighbourhood of the simplest periodic orbit LR.

The orbit LR is a solution (π/2, π/2) of the equation fLRL(x, y, x) = 0 where fLRL is
given in the appendix. We are interested in the orbits starting at the nearby points. Expanding
fLRL(x + π/2, y + π/2, z + π/2) = 0, we obtain an approximation for z

z = −x + 6y + x2y − 6xy2 + 11y3 + O(x, y, z)5. (17)

Considering only linear terms, we have(
y

z

)
=

(
0 1

−1 6

) (
x

y

)
. (18)

The eigenvalues λ and 1/λ of the matrix, where λ = 3 − 2
√

2 ≈ 0.171 57 . . . (λ2 = 6λ − 1),
indicate that it has a contracting and an expanding manifold. As shown in [29], a set of initial
conditions centred around the periodic orbit LR will be stretched upon return into a thin strip
parallel to the unstable direction. Going backward in time, this set will be stretched along
the stable direction. This situation is illustrated in figure 4(a), where the initial conditions for
orbits in each of the families ik are chosen to lie along the unstable manifold, so the orbits
diverge. On the other hand, the corresponding orbits from each family lie along the stable
manifold, so these orbits converge.

The matrix is diagonal in the new coordinates (s, u), where{
x = s + λu

y = u + λs.
(19)

Here, s and u are the coordinates along stable (contracting) and unstable (expanding) directions.
Parameter λ is the scaling parameter, or the rate of decrease of the successive coordinates

for the orbit lying on the stable manifold. This however is true only for small x. Thus,

fLRL

(π

2
+ x,

π

2
+ λx,

π

2
+ λ2x

)
= O(x3). (20)
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Figure 4. (a) Divergence and convergence of orbits lying on stable and unstable manifolds.
(b) Coordinate dependence of the scaling parameter λ(x).

Taking into account the higher powers in (17) leads to dependence of λ on coordinates
(figure 4(b)). The difference between the two curves indicates the correction due to the fifth
and all the higher powers.

The pair (s, u) simultaneously defines the positions of the first two points of the orbit;
another pair similarly defines the last two points. The chain of equations looks similar to the
fixed-end case, except that the first and last equations of the chain must be written in terms of
new coordinates. Since we consider small deviations of the first and last bounces from π/2,
the first two and the last two letters of the path can be either LR or RL. The chain system of
equations for the path LRα1 · · · αnLR, for example, becomes



g0(u0, s0, ξ1) ≡ fLRα1

(π

2
+ s0 + λu0,

π

2
+ u0 + λs0, ξ1

)
= 0

fRα1α2(ξ0, ξ1, ξ2) = 0

· · ·
fαn−1αnL(ξn−1, ξn, ξn+1) = 0

g1(ξn, u1, s1) ≡ fαnLR

(
ξn,

π

2
+ s1 + λu1,

π

2
+ u1 + λs1

)
= 0

(21)

where

ξ0 = π/2 + u0 + λs0 and ξn+1 = π/2 + s1 + λu1. (22)

As an example of calculations we choose the homoclinic (L)RT BL(R) orbit. Letters
in parentheses indicate directions of the ends of the orbit. There are no bounces at those
points for the fragment of trajectory under consideration. The parameter vector is taken as
{s0, u0, ξ1, ξ2, s1, u1}.

The calculations given in table 3 are performed when allowing the ends of the orbit vary
freely in the intervals s0, u1 ∈ [−0.4, 0.4]. The calculated bounds do converge; however,
the resulting intervals for the inner coordinates appear too wide. The widening arises from
allowing every bounce point vary independently within the corresponding interval, whereas
for the billiard they are laced together with a single orbit. To determine the minimal intervals
for each coordinate, we refer back to the fixed-end case, and find the orbits when s0 and u1

assume their extreme values (table 4).
The bundle of homoclinic orbits obtained in this calculation is shown in figure 5(a). The

orbits in this bundle undergo mixing which is demonstrated by numbering the ends of each
orbit by numbers 1, 2, 3 and 4. These numbers correspond to the rows in table 4. Figure 5(b)
shows the initial and final coordinates of these orbits. All the initial conditions are located in
the narrow strip i, parallel to the stable direction, which is then transformed into the strip f

along the unstable direction. Intersection of these strips indicates the periodic orbit LRT B.
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Figure 5. A bundle of homoclinic orbits (a) and the phase portrait of their initial and final
states (b).

Table 3. Convergence of intervals for (L)RT BL(R).

s0 u0 ξ1 ξ2 s1 u1

[−0.4000, 0.4000] [−0.8000, 0.8000] [0.0000, 2.0000] [0.0000, 2.0000] [−0.8000, 0.8000] [−0.4000, 0.4000]
0 [−0.4000, 0.4000] [0.2292, 0.6616] [1.5205, 2.0000] [1.4971, 1.9486] [0.4382, 0.6616] [−0.4000, 0.4000]
1 [−0.4000, 0.4000] [0.4693, 0.6616] [1.5343, 1.9095] [1.5456, 1.9182] [0.4718, 0.6369] [−0.4000, 0.4000]
2 [−0.4000, 0.4000] [0.4733, 0.6252] [1.5676, 1.8990] [1.5652, 1.8978] [0.4795, 0.6225] [−0.4000, 0.4000]
3 [−0.4000, 0.4000] [0.4831, 0.6210] [1.5739, 1.8891] [1.5741, 1.8899] [0.4843, 0.6187] [−0.4000, 0.4000]
4 [−0.4000, 0.4000] [0.4849, 0.6172] [1.5779, 1.8865] [1.5777, 1.8865] [0.4857, 0.6165] [−0.4000 0.4000]
5 [−0.4000, 0.4000] [0.4862, 0.6162] [1.5792, 1.8851] [1.5792, 1.8852] [0.4864, 0.6158] [−0.4000, 0.4000]
6 [−0.4000, 0.4000] [0.4865, 0.6156] [1.5798, 1.8846] [1.5798, 1.8846] [0.4867, 0.6155] [−0.4000, 0.4000]
7 [−0.4000, 0.4000] [0.4867, 0.6154] [1.5801, 1.8844] [1.5801, 1.8844] [0.4868, 0.6154] [−0.4000, 0.4000]
8 [−0.4000, 0.4000] [0.4868, 0.6153] [1.5802, 1.8843] [1.5802, 1.8843] [0.4868, 0.6153] [−0.4000, 0.4000]
9 [−0.4000, 0.4000] [0.4868, 0.6153] [1.5802, 1.8842] [1.5802, 1.8842] [0.4868, 0.6153] [−0.4000, 0.4000]
+ [−0.4000, 0.4000] [0.4868, 0.6153] [1.5802, 1.8842] [1.5802, 1.8842] [0.4868, 0.6153] [−0.4000, 0.4000]

Table 4. Individual orbits in a homoclinic bundle (L)RT BL(R).

0 [0.0000, 0.0000] [0.5474, 0.5474] [1.7355, 1.7355] [1.7355, 1.7355] [0.5474, 0.5474] [0.0000, 0.0000]
1 [0.4000, 0.4000] [0.5489, 0.5489] [1.7039, 1.7039] [1.7039, 1.7039] [0.5489, 0.5489] [0.4000, 0.4000]
2 [0.4000, 0.4000] [0.5370, 0.5370] [1.6690, 1.6690] [1.8006, 1.8006] [0.5596, 0.5596] [−0.4000, −0.4000]
3 [−0.4000, −0.4000] [0.5477, 0.5477] [1.7670, 1.7670] [1.7670, 1.7670] [0.5477, 0.5477] [−0.4000, −0.4000]
4 [−0.4000, −0.4000] [0.5596, 0.5596] [1.8006, 1.8006] [1.6690, 1.6690] [0.5370, 0.5370] [0.4000, 0.4000]

5. Conclusion

The presented algorithm makes use of the interval analysis technique. Generally, the interval
technique is thought to be precise, compared to the regular floating point methods, because
during the calculations the precise value to be calculated is made sure to be always enclosed by
the corresponding interval. With the currently available interval analogues for trigonometric
and other special functions, the interval technique is easy to implement on the computer.

As has already been mentioned in the introduction, a majority of the current techniques
are designed to solve a problem of finding a fixed point of an n-dimensional function f . In
interval methods, to approach the fixed point starting from a certain approximate value, one
applies the Newton [22] or Krawczyk [9] interval contracting operators. In Galias’ method,
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the contracting operator is used only to verify the existence of a fixed point inside a region,
and convergence is achieved by subsequent bisections of the intervals.

The proposed method is similar to the latter method, with the major difference that
the selection of the intervals containing the solution is done dynamically, hence eliminating the
need to check all the subintervals. Also, in the proposed method there is no need for the
contracting operator, since contraction of the enclosing intervals is imposed by the divergence
property of the map itself. The proposed method also makes the connection of the interval
dynamics with the topology of the map, e.g. symbolic dynamics.

The method provides linear convergence which is slower than the more widely accepted
minimization method; however, in addition to periodic orbits it allows calculation of
trajectories with fixed or loose ends. The method provides uniform convergence along the
trajectory regardless of its exponential instability.

The method does not require a well-defined symbolic dynamics (i.e. a symbolic sequence
does not have to characterize only one trajectory). Pruning and resolution of multiple orbits
is done automatically.

Conditions (7) and (8) by themselves do not guarantee that iterations will converge. Since
every single step of the algorithm updates all intervals along the orbit, it is the combination
of parameters L in (8) for each of the bounces that affect convergence. The exact form of the
convergence condition depends on the order in which the intervals are updated.

The algorithm above uses constraints generated only for the middle point of each bounce.
However, the end points of each bounce are also subject to constraints in some cases (for
example TBR bounce is possible for all values of ξT : ξT ∈ [0, 2]. The other two coordinates
become more restricted: ξB ∈ [0, 1] and ξR ∈ [0, π/2]). Taking end points into consideration
is a technical issue, and is not expected to affect the speed of convergence.

Another factor to affect the convergence of the algorithm is the choice of the Markov
partition. As mentioned above, it does not have to be complete to be able to resolve individual
orbits. On the other hand, the choice of partition affects the values of parameters L in (8).
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Appendix. Chain functions

As local coordinates, one can choose XL(ξ) = (−1 − sin(ξ),− cos(ξ), 1),XR(ξ) =
(1 + sin(ξ), cos(ξ), 1),XT (ξ) = (−1 + ξ, 1, 1),XB(ξ) = (1 − ξ, 1, 1), where ξ ∈ [0, π ]
for L or R, and ξ ∈ [0, 2] for T or B. Note that the translation operator introduced in the text
cannot be represented by a 2 × 2 matrix. Therefore here the 3 × 3 representation is chosen.
Rotation, translation matrices and M are taken to be

Rξ =

cos(ξ) −sin(ξ) 0

sin(ξ) cos(ξ) 0
0 0 1


 T(a,b) =


1 0 −a

0 1 −b

0 0 1


 M =


0, 1, 0

1, 0, 0
0, 0, 0




In order to eliminate the spurious ‘plain mirror’ roots of the functions corresponding to the
double LL or RR bounce, we adjust them as follows,

f ′
iRR(x, y, z) ≡ fiRR(x, y, z)

/
sin

(
y − z

2

)

f ′
RRR(x, y, z) ≡ fRRR(x, y, z)

/(
sin

(
x − y

2

)
sin

(
y − z

2

))
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Table A1. Functions fT ij (x, φ, y).

TRR cos y−3φ
2 − cos y−φ

2 + (2 − x) sin y−3φ
2

TRB (2 − x + y) cos φ + (2 − x − y) cos 2φ + (1 + 2y − xy) sin 2φ

TRL (2 − x) cos(y − 2φ) + (4 − x) cos φ − 2 cos 2φ − sin(y − 2φ) + sin(y − φ) + sin φ + (4 − 2x) sin 2φ

TRT (5 + xy − 2x − 2y) cos φ
2 + (3 + xy − 2x − 2y) cos 3φ

2 + (4 − x − y) sin 3φ
2

TBR x − 2 + 3φ + (x + φ − 2) cos y + 2 sin y

TBT x + y + 2φ − 4
TBL x − 6 + 3φ + (2 − x − φ) cos y − 2 sin y

TLL cos y−3φ
2 + cos y−φ

2 − x sin y−3φ
2

TLT −(x + y)(cos φ + cos 2φ) + 2 sin φ − (xy − 1) sin 2φ

TLR −x cos(y − 2φ) − 2 cos 2φ − sin(y − 2φ) − sin(y − φ) + sin φ − (2 + x + 4x sin φ) cos φ

TLB −(2 + x − y) cos φ + (x + y − 2) cos 2φ − (1 + 2x − xy) sin 2φ

Table A2. Functions fLij (x, φ, y).

LLL − sin
(
φ − x+y

2

)
LLT cos x−3φ

2 + cos x−φ
2 − y sin x−3φ

2

LLR cos x+2y−3φ
2 + cos x−φ

2 − 2 sin x−3φ
2

LLB − cos x−3φ
2 + cos x−φ

2 + (y − 2) sin x−3φ
2

LTB −2 + y + 3φ + (y + φ − 2) cos x + 2 sin x

LTR −2 + 2φ + (φ − 2) cos x − φ cos y + sin x − sin y − sin(x + y)

LRR cos 2x+y−3φ
2 + cos y−φ

2 − 2 sin y−3φ
2

LRB y cos(x − 2φ) + 2 cos 2φ + sin(x − 2φ) + sin(x − φ) − sin φ + (2 + y + 4y sin φ) cos φ

LRL 2 cos(x − 2φ) + 2 cos(y − 2φ) + 4 cos φ + sin(x + y − 2φ) + sin(x − φ) + sin(y − φ) + 4 sin 2φ

LRT (2 − y) cos(x − 2φ) + (4 − y) cos φ − 2 cos 2φ − sin(x − 2φ) + sin(x − φ) + sin φ + 4 sin 2φ − 2y sin 2φ

LBR 2φ − 2 − φ cos x + (φ − 2) cos y − sin x + sin y − sin(x + y)

LBT y − 6 + 3φ + (2 − y − φ) cos x − 2 sin x

and similarly for all others. The functions used in calculations are given in tables A1 and A2.
This is necessary only for path segments where x and y bounce points lie on the boundary. All
other functions are obtained from the symmetry properties of the billiard.

The functions are invariant under inversion symmetry (T ↔ B and L ↔ R). Therefore
the second half of the functions is not listed. Also, one can verify that these functions are
symmetric, up to the sign, with respect to both vertical (T ↔ B)

XL(R)(φ) ↔ XL(R)(π − φ) and XT (B)(ξ) ↔ XB(T )(2 − ξ)

or horizontal (L ↔ R)

XL(R)(φ) ↔ XR(L)(π − φ) and XT (B)(ξ) ↔ XT (B)(2 − ξ)

reflections. Similar is true for Zi(x). Thus, for example, fTRR(x, y, z) = fTLL(2 − x, π −
y, π − z).
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